

STUDIO TECNICO ASSOCIATO Loc. Pian da Lago 64 32043 - Cortina d'Ampezzo (BL)

REGIONE LOMBARDIA

PROVINCIA DI BRESCIA

COMUNE DI TEMU'

FLY EMOTION ADAMELLO

Rifugio Roccolo Ventura, Villa D'Alegno - TEMU' (BS)

Adamello

PROGETTO FUNIVIARIO Calcolo di linea

COMMITTENTE

PROGETTISTA

Società Impianti Turistici - S.I.T. s.p.a.

Dott. Ing. Mauro Dandrea Albo Ingegneri di Belluno n.719

Codice doc.	Pratica	Subcommessa	Data
V/01	1273	VAR-01	Maggio 2016
101	PROT. FILE:	1273-VAR-01-V01-01	REV.: emissione

Indice

1	Desci	rizione dell'opera
2	Norm	nativa
	2.1	Prescrizioni principali
3	Parar	netri di progetto
	3.1	Azioni considerate
4	Georg	eferenziazione dei punti
5		nte 1 Rifugio Roccolo Ventura - Villa D'Alegno
	5.1	Dati campata
	5.2	Dati fune
	5.3	Dati carrello
	5.4	Azioni
6	Porta	nte 2 Villa D'Alegno - Temù
	6.1	Dati campata
	6.2	Dati fune
	6.3	Dati carrello
	6.4	Azioni
	6.5	Risultati di calcolo
7	Segna	aletica 1 Rifugio Roccolo Ventura - Villa D'Alegno
	7.1	Dati campata
	7.2	Dati fune
	7.3	Azioni
8	Segna	aletica 2 Villa D'Alegno - Temù
	8.1	Dati campata
	8.2	Dati fune
	8.3	Azioni

CALCOLO DI LINEA

1 Descrizione dell'opera

SIT s.p.a. e Redfeather Ventures Ltd. intendono realizzare in collaborazione un impianto di "aerofune". Si tratta di una zip line innovativa, basata su lunghe campate (1 - 2km) in cui gli utenti "volano" da un capo all'altro di una fune di acciaio, per gravità.

L'impianto in questione sarà costituito da due tratte: la prima con partenza vicino al Rifugio Roccolo Ventura ed arrivo a Villa D'Alegno, in zona parcheggio, la seconda con partenza da Villa D'Alegno (nello stesso punto di sbarco della tratta 1) ed arrivo a monte del nuovo campo scuola sci, vicino alla partenza della seggiovia Temù – Roccolo Ventura.

La presente relazione si propone di verificare la configurazione delle funi: due funi portanti e due di segnalazione, oltre ai coefficienti di sicurezza a fronte delle sollecitazioni di progetto.

2 Normativa

La tipologia di impianto che si intende realizzare non dispone di una propria normativa specifica, pertanto si ritiene opportuno seguire oltre alla buona tecnica, le indicazioni date dal:

Decreto n° R.D. 337 - 08.09 16 novembre 2012 Disposizioni e prescrizioni tecniche per le infrastrutture degli impianti a fune adibiti al trasporto di persone. Armonizzazione delle norme e delle procedure con il decreto legislativo 12 giugno 2003, n. 210, di attuazione della direttiva europea 2000/9/CE.

Le norme sopracitate diventano cogenti rispetto all'impianto attraversato in sospensione.

Seggiovia quadriposto ad ammorsamento automatico *La Croce - Santa Giulia*, il cui costruttore è la ditta Leitner s.p.a. di Vipiteno (BZ).

2.1 Prescrizioni principali

Pertanto si riassumono le principali prescrizioni, pertinenti al progetto, da utilizzarsi nella verifica dell'infrastruttura, riportate nell'allegato tecnico.

2.1.1 6.2 Attacchi di estremità.

Gli attacchi di estremità sono facilmente accessibili per la manutenzione e il controllo. Essi sono disposti per impedire la presenza permanente di umidità

2.1.2 SEGNALAZIONE AL VOLO 9.1 Segnalazione agli enti e alle autorità.

I richiedenti la concessione sono tenuti a segnalare alle autorità e agli enti civili e militari competenti in materia di controllo della sicurezza della navigazione aerea, le linee funiviarie che possono costituire ostacolo alla navigazione aerea. 9.2 Dimensionamento. Nel

caso in cui vengono installati, nell'area di pertinenza dell'impianto, dispositivi destinati alla segnalazione dell'impianto a fune, inteso come ostacolo per la navigazione aerea, tali dispositivi sono da considerare come componenti dell'impianto a fune e da dimensionare con i criteri richiesti per i componenti funiviari.

2.1.3 14.1.3 Presentazione dei calcoli.

La documentazione relativa ai calcoli è chiara e perfettamente comprensibile senza informazioni aggiuntive. Si devono indicare origine e data di elaborazione. I risultati dei calcoli mediante computer dispongono di un'appendice in cui sono descritti il modello di calcolo, i metodi applicati e le ipotesi. Simboli e abbreviazioni sono spiegati. Si deve indicare la versione del programma utilizzato. Si deve illustrare la correlazione tra i valori immessi e quelli emessi (risultati di calcolo).

2.1.4 14.1.5 Azioni.

14.1.5.2 Ad eccezione della determinazione della pressione del vento agli effetti del calcolo delle opere civili, di cui al successivo capitolo 15, per la pressione dinamica si applicano i valori minimi seguenti, salvo casi particolari dove possono essere necessari valori maggiori: a) in esercizio: per il valore minimo della pressione dinamica si ipotizza q = 0.25 kN/m2; b) fuori esercizio: la forza del vento risultante sulle funi, sugli organi e sulle parti mobili dell'impianto che sostengono le funi, o sono sostenute dalle funi, è fissata nel valore minimo convenzionale di 1.2 kN/m^2 ;

14.1.5.3.2 Quando lo strato di ghiaccio non può essere rimosso tempestivamente muovendo o percorrendo le funi o in altro modo, si ipotizza un manicotto di ghiaccio con uno spessore di almeno 25 mm e con una massa unitaria di 600 kg/m3 come valore nominale. L'azione del ghiaccio, qualora ricorra, è considerata separatamente per le condizioni di esercizio e fuori esercizio. Quando le condizioni climatiche del luogo di installazione lo richiedono, si devono ipotizzare spessori del ghiaccio maggiori o una massa volumica maggiore.

2.1.5 14.2 Calcoli giustificativi delle funi.

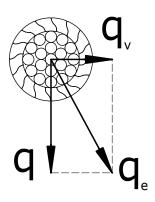
- **14.2.1.3** L'effetto della temperatura in conformità al punto 14.2.1.2f) è di norma considerato per una differenza di temperatura di almeno 60°C, con indicazione dei limiti di temperatura effettivi. Sono possibili scostamenti da questo valore, quando sono motivati dalle condizioni climatiche nel luogo di installazione. Se è presente un dispositivo di regolazione della tensione delle funi o della corsa di tensionamento, in conformità al capitolo 6, è sufficiente considerare una differenza di temperatura di 30°C
 - **14.2.2** Azioni per il calcolo di linea e la verifica delle funi.
- **14.2.2.4** Azioni dovute alle condizioni climatiche. a) Per la deviazione delle funi in conseguenza del vento trasversale si rimanda ai punti 14.10 e 3.2.2. b) Per il calcolo di linea e delle funi si ipotizzano azioni contemporanee dovute al vento e al ghiaccio nei casi seguenti. 1) In esercizio: si ipotizzano pressioni dinamiche del vento in conformità al punto 14.1.5.2 il carico dovuto al ghiaccio è pari a 0,4 volte il valore in conformità al punto 14.1.5.3.2 e con le modalità e le circostanze ivi previste; si ipotizza il carico dovuto al ghiaccio in conformità al punto 14.1.5.3.2; le pressioni dinamiche del vento sono pari

a 0,8 volte i valori in conformità al punto 14.1.5.2 e con le modalità e le circostanze ivi previste. 2) Fuori esercizio: - si ipotizzano pressioni dinamiche del vento in conformità al punto 14.1.5.2; il carico dovuto al ghiaccio è pari a 0,4 volte il valore in conformità al punto 14.1.5.3.2; - si ipotizza il carico dovuto al ghiaccio, in conformità al punto 14.1.5.3.2; le pressioni dinamiche del vento sono pari a 0,6 volte i valori in conformità al punto 14.1.5.2.

In entrambi i casi "fuori esercizio", il valore del vento ipotizzato in conformità al punto 14.1.5.2 può essere ridotto del fattore 0,65. Nel caso di funi ancorate, all'azione dovuta al ghiaccio è associata l'azione derivante dalla temperatura, coerente con quella prevista per la formazione del ghiaccio, tenendo conto delle condizioni locali.

- **14.4.1** Tensioni e frecce delle funi. Il calcolo è effettuato considerando i carichi più sfavorevoli, le posizioni del carico, gli attriti della fune nuda e anche gli attriti della fune con veicoli carichi considerati come carichi concentrati. Per le funi portanti con ancoraggio fisso, nel calcolo si considerano anche l'effetto della temperatura, in conformità al punto 14.2.1.3, e le azioni del vento e del ghiaccio, in conformità al punto 14.2.2.4.
- **14.4.2** Grado di sicurezza. Il grado di sicurezza nelle normali condizioni d'esercizio non è inferiore al valore di 3,15. Considerando l'azione del freno sul veicolo, il grado di sicurezza non è inferiore al valore di 2,70. Considerando le azioni del vento e/o del ghiaccio fuori esercizio, in conformità al punto 14.2.2.4, il grado di sicurezza non è inferiore al valore di 2,25.
- **14.10** Funi dei circuiti di linea o portanti i conduttori di tali circuiti, funi di ancoraggio e simili. 14.10.1 Profilo limite Tensioni e frecce delle funi per il profilo limite sono calcolate considerando i carichi più sfavorevoli. In tale ambito si devono sovrapporre le azioni del vento e del ghiaccio come segue. a) Qualora si assumano le azioni del vento in conformità al punto 14.1.5.2 e gli spostamenti in conformità al capitolo 3, il carico del ghiaccio di cui al punto 14.1.5.3.2 può essere ridotto: - in esercizio, a 0,4 volte il valore, ottenuto riducendo opportunamente lo spessore del manicotto; - fuori esercizio, a 0,2 volte il valore, ottenuto riducendo opportunamente lo spessore del manicotto. b) Qualora si assuma il carico del ghiaccio, in conformità al punto 14.1.5.3.2, l'azione del vento può essere ridotta: - in esercizio, a un valore pari a 0,4 volte la pressione dinamica, in conformità al punto 3.2.2.2; - fuori esercizio, a un valore pari a 0,2 volte la pressione dinamica, in conformità al punto 14.1.5.2. Il profilo limite che queste funi possono assumere è esaminato sia per la condizione di carico "in esercizio", sia per la condizione di carico "fuori esercizio". L'oscillazione delle funi parallele (anche se parallele rispetto ad altre funi dell'impianto) è esaminata analogamente alla determinazione dell'intervia, in conformità al punto 3.3.4. Il profilo limite delle funi dei circuiti di linea o portanti i conduttori di tali circuiti, delle funi di ancoraggio e simili, non interferisce con il profilo limite dell'impianto a fune di cui al punto 3.2. 14.10.2 Grado di sicurezza. Il grado di sicurezza non è inferiore ai valori seguenti. a) In esercizio: - senza considerare le azioni del ghiaccio: 3,0; - considerando le azioni del ghiaccio: 2,5; b) Fuori esercizio, considerando il punto 14.2.2.4: 2,0;
- **14.15.2.1** Il progettista generale presenta: il calcolo di linea; la determinazione delle tensioni delle funi, delle inclinazioni delle funi e delle forze di appoggio dei supporti, del rapporto del carico trasversale sulla linea e, in corrispondenza dei supporti, della sagoma limite; il calcolo delle frecce, della corsa dei contrappesi o di altro dispositivo di tensionamento, della massima potenza motrice e della necessaria forza frenante, nonché la verifica dell'aderenza.

3 Parametri di progetto


Tabella 1: Parametri

D	·•	-1:		- 44 -
Paramet	rı	aı i	prog	etto

	0	
Temperatura ambientale minima	°C	-25
Temperatura ambientale massima	°C	+40
Escursione termica	°C	65
Coefficiente sicurezza in esercizio)	3.15
Coefficiente sicurezza fuori eserci	zio	2.25
Coefficiente sicurezza segnalazion	ne in esercizio	2.50
Coefficiente sicurezza segnalazion	ne fuori esercizio	2.00

3.1 Azioni considerate

3.1.1 In esercizio

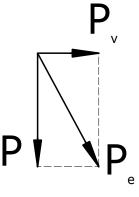
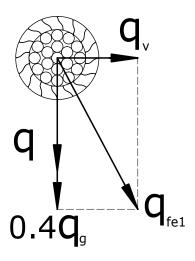


Figura 1: Azione equivalente sulla fune


Figura 2: Azione equivalente sul carrello

Dove la spinta unitaria del vento è assunta pari a $0.25~\frac{kN}{m^2}$ in esercizio e $1.2~\frac{kN}{m^2}$ per le condizioni fuori esercizio conformemente al punto 14.1.5.2 del Decreto, mentre il peso specifico del manicotto di ghiaccio è assunto pari a $600~\frac{kg}{m^3}$ con uno spessore di 25 mm, conformemente al punto 14.1.5.3.2 del Decreto.

Tabella 2: Significato simboli

Peso unitario della fune	q
Spinta unitaria del vento	q_v
Azione equivalente	q_e
_	
Peso del carrello carico	P
Spinta del vento sul carrello	P_v
Azione equivalente sul carico	P_e

3.1.2 Fuori esercizio

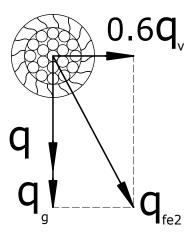


Figura 3: Condizione 1

Figura 4: Condizione 2

Tabella 3: Significato simboli

Peso unitario della fune	q
Spinta unitaria del vento	q_v
Peso unitario manicotto di ghiaccio	q_g
Azione equivalente	q_{fe}

4 Georeferenziazione dei punti

Point Number	Full Description	Point Elevation
1	Ancoraggio Tratta 2 - Temu'	1200.000m
2	Stazione arrivo 2	1187.000m
3	Ancoraggio Segnaletica 2 - Temu'	1240.500m
4	Ancoraggio Tratta 1 - Villa	1358.000m
5	Stazione Arrivo 1 - Villa	1355.000m
6	Stazione Partenza 1 - Rifugio RV	1722.500m
7	Ancoraggio Segnaletica 1 - Rif. RV	1780.000m
8	Ancoraggio Segnaletica 1 - Villa	1389.000m
9	Ancoraggio Monte Tratta 2	1355.100m

N.	Grid Easting	Grid Northing	Longitude	Latitude	Convergence
1	1613876.6335m	5122434.3657m	E010° 28' 37.68"	N046° 14' 42.24"	001° 04' 01.39"
2	1613896.1033m	5122469.3075m	E010° 28' 38.62"	N046° 14' 43.36"	001° 04' 02.09"
3	1613854.1608m	5122345.9442m	E010° 28' 36.55"	N046° 14' 39.39"	001° 04' 00.53"
4	1614556.0212m	5123709.1544m	E010° 29' 10.51"	N046° 15' 23.12"	001° 04' 25.85"
5	1614562.0361m	5123663.8141m	E010° 29' 10.75"	N046° 15' 21.65"	001° 04' 26.00"
6	1614813.9105m	5121765.1952m	E010° 29' 20.85"	N046° 14' 20.00"	001° 04' 32.18"
7	1615038.0604m	5121623.2676m	E010° 29' 31.18"	N046° 14' 15.27"	001° 04' 39.57"
8	1614593.3134m	5123766.4664m	E010° 29' 12.30"	N046° 15' 24.95"	001° 04' 27.18"
9	1614564.1099m	5123667.5340m	E010° 29' 10.85"	N046° 15' 21.77"	001° 04' 26.07"

5 Portante 1 Rifugio Roccolo Ventura - Villa D'Alegno

5.1 Dati campata

Tabella 4: Dati Campata portante 1

\mathbf{V}	alle	Mo	nte		Campata	
Prog.	Quota	Prog.	Quota	Lung. orizz.	Dislivello	Lung. Inclin.
X_a	Y_a	X_b	Y_b	l	Δh	L
(m)	(m)	(m)	(m)	(m)	(m)	(m)
10	1358.00	1971.00	1724.00	1961.00	366.00	1994.86

5.2 Dati fune

Tabella 5: Dati fune portante 1

Dati fune portante 1

F				
Diametro	Sezione	Peso unitario	Carico rottura	Tiro valle
D	S	q	C_{rott}	T_a
(mm)	(mm^2)	$(\frac{kg}{m})$	(kN)	(kN)
25	388	3.45	700	200

Il tiro a valle T_a è rapportato alla condizione di maggior tiro (-25°C).

5.3 Dati carrello

Tabella 6: Dati carrello portante 1

Peso del veicolo	P	250	(kg)
Ingombro verticale	H_{carr}	1.25	(m)
Superficie laterale esposta	S_{vento}	1	(m^2)

5.4 Azioni

5.4.1 In esercizio

Con il significato dei simboli descritto al punto 3.1.1:

$$q_e = \sqrt{q^2 + (25 \times 25 \times 10^{-3})^2} = 3.50 \frac{kg}{m}$$

$$P_e = \sqrt{P^2 + (25 \times 1)^2} = 252 kg$$

5.4.2 Fuori esercizio

Con il significato dei simboli descritto al punto 3.1.2:

$$P_e = \sqrt{P^2 + (25 \times 1)^2} = 252 \ kg$$

$$q_g = \pi \times 600 \frac{(25 + 2 \times 25)^2 - 25^2}{4 \times 10^6} = 2.35 \ \frac{kg}{m}$$

$$q_v = 0.65 \times 120 \times (25 + 2 \times 25) \times 10^{-3} = 5.85 \ \frac{kg}{m}$$

$$q_{fe1} = \sqrt{((q + 0.4 \times q_g)^2 + q_v^2)} = 7.31 \ \frac{kg}{m}$$

$$q_{fe2} = \sqrt{((q+q_g)^2 + (0.6 \times q_v)^2)} = 6.78 \frac{kg}{m}$$
$$q_{fe} = \max(q_{fe1}, q_{fe2}) = 7.31 \frac{kg}{m}$$

La tensione è calcolata a -25°C, mentre il disegno della campata con il manicotto è calcolata a 0°C, considerando solo la componente verticale.

5.4.3 In esercizio -25 °C

Metodi di calcolo: configurazioni fune a CATENARIA

Num.campata: 1 salto termico: 0 Lunghezza orizzontale: 1961.00 dislivello: 366.00

Progressiva carico: 0.50

Tensione in campata a valle	(daN):	20000
Tensione in campata sul carico	(daN):	20000
Tensione in campata a monte	(daN):	21263
Freccia camp. a valle del car	(m):	0.00
Freccia sul carico	(m):	0.09
Freccia camp. a monte del car	(m):	84.50

CALCOLO CAMPATA

Campata	T.valle	T.monte	Svil.	Frecc.	a(v)	a(m)
N.SOST	(daN)	(daN)	(m)	(m)	gradi	gradi
SV-SM	20000	21263	2004.07	0.09	0.15	19.86

Metodi di calcolo: configurazioni fune a CATENARIA

Num.campata: 1 salto termico: 0 Lunghezza orizzontale: 1961.00 dislivello: 366.00

Progressiva carico: 490.25

Tensione in campata a valle	(daN):	20627
<u> </u>	` /	20715
Tensione in campata sul carico	(daN):	
Tensione in campata a monte	(daN):	21889
Freccia camp. a valle del car	(m):	5.03
Freccia sul carico	(m):	65.89
Freccia camp. a monte del car	(m):	46.53

Campata	T.valle	T.monte	Svil.	Frecc.	a(v)	a(m)
N.SOST	(daN)	(daN)	(m)	(m)	gradi	gradi
SV-SM	20627	21889	2004.31	65.89	0.64	19.76

Metodi di calcolo: configurazioni fune a CATENARIA

Num.campata: 1 salto termico: 0 Lunghezza orizzontale: 1961.00 dislivello: 366.00

Progressiva carico: 980.50

Tensione in campata a valle 20815 (daN): Tensione in campata sul carico (daN): 21145 Tensione in campata a monte 22078 (daN): Freccia camp. a valle del car 20.03 (m): Freccia sul carico 87.43 (m): Freccia camp. a monte del car (m): 20.72

CALCOLO CAMPATA

Campata	T.valle	T.monte	Svil.	Frecc.	a(v)	a(m)
N.SOST	(daN)	(daN)	(m)	(m)	gradi	gradi
SV-SM	20815	22078	2004.38	87.43	0.91	19.85

Metodi di calcolo : configurazioni fune a CATENARIA

Num.campata: 1 salto termico: 0 Lunghezza orizzontale: 1961.00 dislivello: 366.00

Progressiva carico: 1470.75

20605 Tensione in campata a valle (daN): Tensione in campata sul carico (daN): 21322 Tensione in campata a monte (daN): 21868 Freccia camp. a valle del car 45.78 (m): Freccia sul carico 66.60 (m): Freccia camp. a monte del car (m): 5.30

Campata	T.valle	T.monte	Svil.	Frecc.	a(v)	a(m)
N.SOST	(daN)	(daN)	(m)	(m)	gradi	gradi
SV-SM	20605	21868	2004.30	66.60	1.00	20.10

Num.campata:	1	salto tern	nico:	0	
Lunghezza orizzontale:	1961.00	dislivello	:	366.00	
Progressiva carico:		1960.50			
Tensione in campata a vall	e	(daN):	20000		
Tensione in campata sul ca	rico	(daN):	21262		
Tensione in campata a mor	nte	(daN):	21263		
Freccia camp. a valle del c	ar	(m):	84.50		
Freccia sul carico		(m):	0.09		
Freccia camp. a monte del	car	(m):	0.00		
CA	LCOLO	CAMPAT	A		
Commete Twelle	Tananta	C:1	D	2(22)	()

Campata	T.valle	T.monte	Svil.	Frecc.	a(v)	a(m)
N.SOST	(daN)	(daN)	(m)	(m)	gradi	gradi
SV-SM	20000	21263	2004.07	0.09	0.89	20.53

5.4.4 Controverifica manuale

Si esegue la verifica manuale dei risultati con il metodo approssimato della parabola:

$$f_{max} = \frac{q_e \times L \times l}{8 \times T} + \frac{P_e \times l}{4 \times T} = \frac{3.45 \times 1994.86 \times 1961}{8 \times 20000} + \frac{252 \times 1961}{4 \times 20000} = 90.53$$

$$T_m = T + q_e \times \Delta h = 20000 + 3.45 \times 366.00 = 21262 \ daN$$

Il risultato è compatibile, 110 m con il calcolo utilizzando la catenaria.

5.4.5 In esercizio +40 °C

Metodi di calcolo: configurazioni fune a CATENARIA

Num.campata: 1 salto termico: 65 Lunghezza orizzontale: 1961.00 dislivello: 366.00

Progressiva carico: 0.50

Tensione in campata a valle (daN): 18890 Tensione in campata sul carico 18890 (daN): Tensione in campata a monte (daN): 20153 Freccia camp. a valle del car 0.00 (m): Freccia sul carico (m): 0.10 Freccia camp. a monte del car 89.48 (m):

CALCOLO CAMPATA

Campata	T.valle	T.monte	Svil.	Frecc.	a(v)	a(m)
N.SOST	(daN)	(daN)	(m)	(m)	gradi	gradi
SV-SM	18890	20153	2005.19	0.1	-0.46	20.39

Metodi di calcolo: configurazioni fune a CATENARIA

Num.campata: 1 salto termico: 65 Lunghezza orizzontale: 1961.00 dislivello: 366.00

Progressiva carico: 490.25

Tensione in campata a valle (daN): 19510 Tensione in campata sul carico (daN): 19586 Tensione in campata a monte (daN): 20773 Freccia camp. a valle del car (m): 5.32 Freccia sul carico 69.65 (m): Freccia camp. a monte del car 49.23 (m):

Campata	T.valle	T.monte	Svil.	Frecc.	a(v)	a(m)
N.SOST	(daN)	(daN)	(m)	(m)	gradi	gradi
SV-SM	19510	20773	2005.42	69.65	0.07	20.27

PROGETTO FUNIVIARIO

Metodi di calcolo : configurazioni fune a CATENARIA

Num.campata: salto termico: 65 Lunghezza orizzontale: 1961.00 dislivello: 366.00 980.50

Progressiva carico:

Tensione in campata a valle 19696 (daN): Tensione in campata sul carico (daN): 20009 Tensione in campata a monte (daN): 20959 Freccia camp. a valle del car 21.15 (m): Freccia sul carico 92.41 (m): Freccia camp. a monte del car (m): 21.93

CALCOLO CAMPATA

Campata	T.valle	T.monte	Svil.	Frecc.	a(v)	a(m)
N.SOST	(daN)	(daN)	(m)	(m)	gradi	gradi
SV-SM	19696	20959	2005.49	92.41	0.36	20.36

Metodi di calcolo: configurazioni fune a CATENARIA

Num.campata: salto termico: 65 Lunghezza orizzontale: 1961.00 dislivello: 366.00

Progressiva carico: 1470.75

19487 Tensione in campata a valle (daN): Tensione in campata sul carico (daN): 20191 Tensione in campata a monte (daN): 20750 Freccia camp. a valle del car 48.39 (m): Freccia sul carico 70.45 (m): Freccia camp. a monte del car (m): 5.62

Campata	T.valle	T.monte	Svil.	Frecc.	a(v)	a(m)
N.SOST	(daN)	(daN)	(m)	(m)	gradi	gradi
SV-SM	19487	20750	2005.41	70.45	0.44	20.63

Metodi di calcolo: configurazioni fune a CATENARIA					
Num.campata:	1	salto termico:	65		
Lunghezza orizzontale:	1961.00	dislivello:	366.00		

Progressiva carico: 1960.50

Tensione in campata a valle	(daN):	18890
Tensione in campata sul carico	(daN):	20152
Tensione in campata a monte	(daN):	20153
Freccia camp. a valle del car	(m):	89.48
Freccia sul carico	(m):	0.10
Freccia camp. a monte del car	(m):	0.00

CALCOLO CAMPATA

Campata	T.valle	T.monte	Svil.	Frecc.	a(v)	a(m)
N.SOST	(daN)	(daN)	(m)	(m)	gradi	gradi
SV-SM	18890	20153	2005.19	0.10	0.32	21.10

5.4.6 Fuori esercizio -25 °C, ghiaccio e vento

Metodi di calcolo: configurazioni fune a CATENARIA

Num.campata: 1 salto termico: 0 Lunghezza orizzontale: 1961.00 dislivello: 366.00

Progressiva carico:

Tensione in campata a valle (daN): 27966
Tensione in campata a monte (daN): 30641
Freccia in campata (inclinata) (m): 128.66
Sviluppo (m): 2016.17

5.4.7 Coefficiente di sicurezza

in esercizio

$$k_e = \frac{C_{rott}}{T_{max}} = \frac{700000}{22078} = 3.17 > 3.15$$

fuori esercizio

$$k_{fe} = \frac{C_{rott}}{T_{max}} = \frac{700000}{30641} = 2.28 > 2.25$$

La fune sopporta il carico combinato.

Con il manicotto di ghiaccio, la fune interferisce con gli attraversamenti, pertanto è necessario predisporre adeguate procedure di verifica prima di azionare l'impianto.

5.4.8 Tabella di tesatura

	Tesatura							
Tem	peratura	Tir	0					
am	biente	di po	osa					
-25	°C	20000	daN					
-20	°C	19912	daN					
-15	°C	19824	daN					
-10	°C	19739	daN					
-5	°C	19653	daN					
0	°C	19560	daN					
5	$^{\circ}\mathrm{C}$	19474	daN					
10	°C	19388	daN					
15	$^{\circ}\mathrm{C}$	19304	daN					
20	$^{\circ}\mathrm{C}$	19220	daN					
25	$^{\circ}\mathrm{C}$	19185	daN					
30	°C	19103	daN					
35	$^{\circ}\mathrm{C}$	19022	daN					
40	$^{\circ}\mathrm{C}$	18941	daN					

La validità dei calcoli è legata alla corretta tesatura in fase di posa.

6 Portante 2 Villa D'Alegno - Temù

6.1 Dati campata

Tabella 7: Dati Campata portante 2

Va	lle	Mon	ite		Campata	
Prog.	Quota	Prog.	Quota	Lung. orizz.	Dislivello	Lung. Inclin.
X_a	Y_a	X_b	Y_b	l	Δh	L
(m)	(m)	(m)	(m)	(m)	(m)	(m)
10	1200	1421.85	1355 1	1411.85	155.1	1420 34

6.2 Dati fune

Tabella 8: Dati fune portante 2

Dati fune portante 2

Diametro	Sezione	Peso unitario	Carico rottura	Tiro valle
D	S	q	C_{rott}	T_a
(mm)	(mm^2)	$(\frac{kg}{m})$	(kN)	(kN)
22	322	2.66	550	125

Il tiro a valle T_a è rapportato alla condizione di maggior tiro (-25°C).

6.3 Dati carrello

Tabella 9: Dati carrello portante 2

Peso del veicolo	P	250	(kg)
Ingombro verticale	H_{carr}	1.25	(m)
Superficie laterale esposta	S_{vento}	1	(m^2)

6.4 Azioni

6.4.1 In esercizio

Con il significato dei simboli descritto al punto 3.1.1:

$$q_e = \sqrt{q^2 + (25 \times 1 \times 22 \times 10^{-3})^2} = 2.72 \frac{kg}{m}$$

$$P_e = \sqrt{P^2 + (25 \times 1)^2} = 252 kg$$

6.4.2 Fuori esercizio

Con il significato dei simboli descritto al punto 3.1.2:

$$P_e = \sqrt{P^2 + (25 \times 1)^2} = 252 \ kg$$

$$q_g = \pi \times 600 \frac{(22 + 2 \times 25)^2 - 22^2}{4 \times 10^6} = 2.21 \ \frac{kg}{m}$$

$$q_v = 0.65 \times 120 \times 1 \times (22 + 2 \times 25) \times 10^{-3} = 5.61 \ \frac{kg}{m}$$

$$q_{fe1} = \sqrt{((q + 0.4 \times q_g)^2 + q_v^2)} = 6.63 \ \frac{kg}{m}$$

$$q_{fe2} = \sqrt{((q+q_g)^2 + 0.6 \times q_v^2)} = 5.94 \frac{kg}{m}$$
$$q_{fe} = \max(q_{fe1}, q_{fe2}) = 6.63 \frac{kg}{m}$$

La tensione è calcolata a -25°C, mentre il disegno della campata con il manicotto è calcolata a 0°C, considerando solo la componente verticale.

6.5 Risultati di calcolo

6.5.1 In esercizio -25 °C

Metodi di calcolo : configurazioni fune a CATENARIA							
Num.campata:	1	salto term	nico:	0			
Lunghezza orizzontale:	1411.85	dislivello	:	155.85			
Progressiva carico:		0.50					
Tensione in campata a va	lle	(daN):	12500				
Tensione in campata sul	carico	(daN):	12500				
Tensione in campata a mo	onte	(daN):	12924				
Freccia camp. a valle del car		(m):	0.00				
Freccia sul carico		(m):	0.09				
Freccia camp. a monte de	el car	(m):	54.67				

Campata	T.valle	T.monte	Svil.	Frecc.	a(v)	a(m)
N.SOST	(daN)	(daN)	(m)	(m)	gradi	gradi
SV-SM	12500	12924	1425 96	0.09	-3.65	14 93

Metodi di calcolo	configurazioni	i fune a CATENARIA
microai ai caicoio	Commission	

Num.campata: 1 salto termico: 0 Lunghezza orizzontale: 1411.85 dislivello: 155.85

Progressiva carico: 352.96

Tensione in campata a valle (daN): 13212 Tensione in campata sul carico (daN): 13198 Tensione in campata a monte 13636 (daN): Freccia camp. a valle del car 3.21 (m): Freccia sul carico 43.94 (m): Freccia camp. a monte del car 29.27 (m):

CALCOLO CAMPATA

Campata	T.valle	T.monte	Svil.	Frecc.	a(v)	a(m)
N.SOST	(daN)	(daN)	(m)	(m)	gradi	gradi
SV-SM	13212	13636	1426.19	43.94	-2.89	14.74

Metodi di calcolo: configurazioni fune a CATENARIA

Num.campata: 1 salto termico: 0 Lunghezza orizzontale: 1411.85 dislivello: 155.85

Progressiva carico: 705.92

Tensione in campata a valle (daN): 13426 Tensione in campata sul carico (daN): 13481 Tensione in campata a monte (daN): 13850 Freccia camp. a valle del car 12.64 (m): Freccia sul carico (m): 57.75 Freccia camp. a monte del car (m): 12.89

Campata	T.valle	T.monte	Svil.	Frecc.	a(v)	a(m)
N.SOST	(daN)	(daN)	(m)	(m)	gradi	gradi
SV-SM	13426	13850	1426.26	57.75	-2.46	14.88

Metodi di calcolo : configurazioni fune a CATENARIA								
Num.campa	Num.campata: 1		salto tern	nico:	0			
Lunghezza	orizzontale:	1411.85	dislivelle):	155.85			
Progressiva	carico:		1058.89					
Tensione in	campata a va	ılle	(daN):	13196				
Tensione in	campata sul	carico	(daN):	13393				
Tensione in	campata a m	onte	(daN):	13393				
Freccia cam	p. a valle del	car	(m):	29.01				
Freccia sul	carico		(m):	44.20				
Freccia cam	Freccia camp. a monte del car			3.31				
	CALCOLO CAMPATA							
Campata	T.valle	T.monte	Svil.	Frecc.	a(v)	a(m)		

Campata	T.valle	T.monte	Svil.	Frecc.	a(v)	a(m)
N.SOST	(daN)	(daN)	(m)	(m)	gradi	gradi
SV-SM	13196	13620	1426.18	44.20	-2.33	-2.33

Metodi di calcolo: configurazioni fune a CATENARIA Num.campata: 1 salto termico: 0 Lunghezza orizzontale: 1411.85 dislivello: 155.85 Progressiva carico: 1411.35 12500 Tensione in campata a valle (daN): Tensione in campata sul carico (daN): 12924 Tensione in campata a monte (daN): 12924 Freccia camp. a valle del car (m): 54.66 Freccia sul carico (m): 0.09 Freccia camp. a monte del car 0.00 (m):

CALCOLO CAMPATA

Campata	T.valle	T.monte	Svil.	Frecc.	a(v)	a(m)
N.SOST	(daN)	(daN)	(m)	(m)	gradi	gradi
SV-SM	12500	12924	1425.96	0.09	-2.52	16.04

6.5.2 Controverifica manuale

Si esegue la verifica manuale dei risultati con il metodo approssimato della parabola:

$$f_{max} = \frac{q_e \times L \times l}{8 \times T} + \frac{P_e \times l}{4 \times T} = \frac{2.72 \times 1411.85 \times 1420.34}{8 \times 12500} + \frac{252 \times 1411.85}{4 \times 12500} = 61.66 \ m$$

$$T_m = T + q_e \times \Delta h = 12500 + 2.72 \times 155.1 = 12921 \ daN$$

Il risultato è compatibile, 110 m con il calcolo utilizzando la catenaria.

6.5.3 In esercizio +40 °C

Metodi di calcolo: configurazioni fune a CATENARIA

Num.campata: 1 salto termico: 65 Lunghezza orizzontale: 1411.85 dislivello: 155.85

Progressiva carico: 0.50

Tensione in campata a valle (daN): 11646 Tensione in campata sul carico (daN): 11646 Tensione in campata a monte (daN): 12070 Freccia camp. a valle del car 0.00 (m): Freccia sul carico 0.09 (m): Freccia camp. a monte del car 58.72 (m):

CALCOLO CAMPATA

Campata	T.valle	T.monte	Svil.	Frecc.	a(v)	a(m)
N.SOST	(daN)	(daN)	(m)	(m)	gradi	gradi
SV-SM	11646	12070	1426.811	0.09	-4.39	15.55

Metodi di calcolo: configurazioni fune a CATENARIA

Num.campata: 1 salto termico: 65 Lunghezza orizzontale: 1411.85 dislivello: 155.85

Progressiva carico: 352.96

Tensione in campata a valle (daN): 12345 Tensione in campata sul carico (daN): 12323 Tensione in campata a monte (daN): 12769 Freccia camp. a valle del car (m): 3.44 Freccia sul carico 47.06 (m): Freccia camp. a monte del car 31.36 (m):

Campata	T.valle	T.monte	Svil.	Frecc.	a(v)	a(m)
N.SOST	(daN)	(daN)	(m)	(m)	gradi	gradi
SV-SM	12345	12769	1427.04	47.06	-3.54	15.33

Metodi di calcolo	· configurazioni	fune a CATENARIA
Mictoul al calcolo	. comingulazioni	

Num.campata:	1	salto termico:	65
Lunghezza orizzontale:	1411.85	dislivello:	155.85

Progressiva carico: 705.92

Tensione in campata a valle	(daN):	12555
Tensione in campata sul carico	(daN):	12599
Tensione in campata a monte	(daN):	12979
Freccia camp. a valle del car	(m):	13.52
Freccia sul carico	(m):	61.81
Freccia camp. a monte del car	(m):	13.81

CALCOLO CAMPATA

Campata	T.valle	T.monte	Svil.	Frecc.	a(v)	a(m)
N.SOST	(daN)	(daN)	(m)	(m)	gradi	gradi
SV-SM	12555	12979	1427.10	61.81	-3.08	15.46

Metodi di calcolo: configurazioni fune a CATENARIA

Num.campata:	1	salto termico:	65
Lunghezza orizzontale :	1411.85	dislivello:	155.85

Progressiva carico: 1058.89

Tensione in campata a valle	(daN):	12328
Tensione in campata sul carico	(daN):	12517
Tensione in campata a monte	(daN):	12752
Freccia camp. a valle del car	(m):	31.07
Freccia sul carico	(m):	47.35
Freccia camp. a monte del car	(m):	3.56

Campata	T.valle	T.monte	Svil.	Frecc.	a(v)	a(m)
N.SOST	(daN)	(daN)	(m)	(m)	gradi	gradi
SV-SM	12328	12752	1427.03	47.35	-2.95	15.91

Metodi di calcolo: configurazioni fune a CATENARIA

Num.campata: 1 salto termico: 65 Lunghezza orizzontale: 1411.85 dislivello: 155.85

Progressiva carico: 1411.35

Tensione in campata a valle 11646 (daN): Tensione in campata sul carico 12070 (daN): Tensione in campata a monte (daN): 12070 Freccia camp. a valle del car 58.72 (m): Freccia sul carico (m): 0.10 Freccia camp. a monte del car (m): 0.00

CALCOLO CAMPATA

Campata	T.valle	T.monte	Svil.	Frecc.	a(v)	a(m)
N.SOST	(daN)	(daN)	(m)	(m)	gradi	gradi
SV-SM	11646	12070	1426.81	0.10	-3.18	16.74

6.5.4 Fuori esercizio -25 °C, ghiaccio e vento

Metodi di calcolo: configurazioni fune a CATENARIA

Num.campata: 1 salto termico: 0 Lunghezza orizzontale: 1411.85 dislivello: 155.85

Progressiva carico:

Tensione in campata a valle (daN): 23260
Tensione in campata a monte (daN): 24237
Freccia in campata (inclinata) (m): 67.95

6.5.5 Coefficiente di sicurezza

in esercizio

$$k_e = \frac{C_{rott}}{T_{max}} = \frac{550000}{13850} = 3.97 > 3.15$$

fuori esercizio

$$k_{fe} = \frac{C_{rott}}{T_{max}} = \frac{550000}{24237} = 2.27 > 2.25$$

La fune sopporta il carico combinato.

La tensione è calcolata a -25°C, mentre il disegno della campata a 0°C.

Si deve verificare l'interferenza della catenaria con il manicotto di ghiaccio a 0 °C e gli attraversamenti.

6.5.6 Tabella di tesatura

Tesatura						
Tem	peratura	Tir	0			
am	biente	di po	osa			
-25	°C	12500	daN			
-20	°C	12423	daN			
-15	°C	12363	daN			
-10	°C	12295	daN			
-5	°C	12228	daN			
0	°C	12163	daN			
5	$^{\circ}\mathrm{C}$	12089	daN			
10	°C	12024	daN			
15	$^{\circ}\mathrm{C}$	11959	daN			
20	°C	11895	daN			
25	°C	11831	daN			
30	°C	11769	daN			
35	°C	11707	daN			
40	°C	11646	daN			

La validità dei calcoli è legata alla corretta tesatura in fase di posa.

7 Segnaletica 1 Rifugio Roccolo Ventura - Villa D'Alegno

7.1 Dati campata

Tabella 10: Dati Campata segnaletica 1

V	alle	Mon	ite		Campata	
Prog.	Quota	Prog.	Quota	Lung. orizz.	Dislivello	Lung. Inclin.
X_a	Y_a	X_b	Y_b	l	Δh	L
(m)	(m)	(m)	(m)	(m)	(m)	(m)
10	1389.00	2188.85	1780.5	2188.85	391.5	2223.59

7.2 Dati fune

Tabella 11: Dati fune segnaletica 1

Dati fune segnaletica 1

		0		
Diametro	Sezione	Peso unitario	Carico rottura	Tiro valle
D	S	q	C_{rott}	T_a
(mm)	(mm^2)	$(\frac{kg}{m})$	(kN)	(kN)
36	544	4.88	900	270

Il tiro a valle T_a è rapportato alla condizione di maggior tiro (-25°C).

7.3 Azioni

Calcolate per le funi di segnalazione.

7.3.1 In esercizio

Con il significato dei simboli descritto al punto 3.1.2:

$$q_v = 25 \times 36 \times 10^{-3} = 0.9 \, \frac{kg}{m}$$

$$q_e = \sqrt{(q^2 + q_v^2)} = 4.96 \frac{kg}{m}$$

7.3.2 Fuori esercizio

Con il significato dei simboli descritto al punto 3.1.2:

$$q_g = \pi \times 600 \frac{(36 + 2 \times 25)^2 - 36^2}{4 \times 10^6} = 2.87 \frac{kg}{m}$$

$$q_{v1} = 120 \times (36 + 2 \times 7.07) \times 10^{-3} = 6.01 \frac{kg}{m}$$

Con il manicotto ridotto a 0.2.

$$q_{fe1} = \sqrt{((q+0.2 \times q_g)^2 + q_{v1}^2)} = 8.12 \frac{kg}{m}$$

$$q_{v2} = 120 \times (36 + 2 \times 25) \times 10^{-3} = 10.32 \frac{kg}{m}$$

$$q_{fe2} = \sqrt{((q+q_g)^2 + (0.2 \times q_{v2})^2)} = 8.02 \frac{kg}{m}$$

$$q_{fe} = \max(q_{fe1}, q_{fe2}) = 8.12 \frac{kg}{m}$$

7.3.3 In esercizio -25 °C, vento senza ghiaccio

Metodi di calcolo: configurazioni fune a CATENARIA

Num.campata: 1 salto termico: 0 Lunghezza orizzontale: 2188.86 dislivello: 391.00

Tensione in campata a valle (daN): 28000 Tensione in campata a monte (daN): 29939 Freccia campata (m): 108.05

CALCOLO CAMPATA

Campata	T.valle	T.monte	Svil.	Frecc.	a(v)	a(m)
N.SOST	(daN)	(daN)	(m)	(m)	gradi	gradi
SV-SM	28000	29939	2237.05	108.05	-0.99	20.76

7.3.4 In esercizio +20 °C

Metodi di calcolo: configurazioni fune a CATENARIA

Num.campata: 1 salto termico: 45 Lunghezza orizzontale: 2188.86 dislivello: 391.00

Tensione in campata a valle (daN): 27031
Tensione in campata a monte (daN): 28939
Freccia campata (m): 110.13

Campata	T.valle	T.monte	Svil.	Frecc.	a(v)	a(m)
N.SOST	(daN)	(daN)	(m)	(m)	gradi	gradi
SV-SM	27031	28939	2237.57	110.13	-1.21	20.96

7.3.5 In esercizio +40 °C, con vento

Metodi di calcolo: configurazioni fune a CATENARIA

Num.campata: 1 salto termico: 65 Lunghezza orizzontale: 2188.86 dislivello: 391.00

Tensione in campata a valle (daN): 26600 Tensione in campata a monte (daN): 28539 Freccia campata (m): 113.79

CALCOLO CAMPATA

Campata	T.valle	T.monte	Svil.	Frecc.	a(v)	a(m)
N.SOST	(daN)	(daN)	(m)	(m)	gradi	gradi
SV-SM	26600	28539	2238.52	113.79	-0.90	21.30

7.3.6 Controverifica manuale

Si esegue la verifica manuale dei risultati con il metodo approssimato della parabola:

$$f_{max} = \frac{q_e \times L \times l}{8 \times T} = \frac{4.88 \times 2188.85 \times 2223.59}{8 \times 27031} = 109.83$$

$$T_m = T + q_e \times \Delta h = 27031 + 4.88 \times 391.5 = 28941 \ daN$$

Il risultato è compatibile, 110 m con il calcolo utilizzando la catenaria.

7.3.7 Fuori esercizio -25 °C, ghiaccio e vento

Metodi di calcolo: configurazioni fune a CATENARIA

Num.campata: 1 salto termico: 0 Lunghezza orizzontale: 2188.86 dislivello: 391.00

Tensione in campata a valle (daN): 38000 Tensione in campata a monte (daN): 41175 Freccia campata (m): 130.70

Campata	T.valle	T.monte	Svil.	Frecc.	a(v)	a(m)
N.SOST	(daN)	(daN)	(m)	(m)	gradi	gradi
SV-SM	38000	41175	2243.28	130.70	-4.83	22.88

7.3.8 Fuori esercizio -25 °C, senza ghiaccio e vento

Metodi di calcolo: configurazioni fune a CATENARIA

Num.campata: 1 salto termico: 0 Lunghezza orizzontale: 2188.86 dislivello: 391.00

Tensione in campata a valle (daN): 28000 Tensione in campata a monte (daN): 29908 Freccia campata (m): 106.29

CALCOLO CAMPATA

Campata	T.valle	T.monte	Svil.	Frecc.	a(v)	a(m)
N.SOST	(daN)	(daN)	(m)	(m)	gradi	gradi
SV-SM	28000	29908	2236.61	106.29	-0.81	20.59

7.3.9 Fuori esercizio +40 °C

Metodi di calcolo: configurazioni fune a CATENARIA

Num.campata: 1 salto termico: 65 Lunghezza orizzontale: 2188.86 dislivello: 391.00

Tensione in campata a valle (daN): 26600 Tensione in campata a monte (daN): 28508 Freccia campata (m): 111.94

CALCOLO CAMPATA

Campata	T.valle	T.monte	Svil.	Frecc.	a(v)	a(m)
N.SOST	(daN)	(daN)	(m)	(m)	gradi	gradi
SV-SM	26600	28508	2238.04	111.94	-1.39	21.13

7.3.10 Coefficiente di sicurezza

in esercizio

$$k_e = \frac{C_{rott}}{T_{max}} = \frac{90000}{29939} = 3.01 > 3.00$$

fuori esercizio

$$k_{fe} = \frac{C_{rott}}{T_{max}} = \frac{900000}{41175} = 2.18 > 2.00$$

La fune sopporta il carico combinato.

7.3.11 Tabella di tesatura

	Tesatura						
Tem	peratura	Tir	0				
am	biente	di posa					
-25	°C	28000	daN				
-20	$^{\circ}C$	27892	daN				
-15	$^{\circ}C$	27785	daN				
-10	$^{\circ}C$	27677	daN				
-5	$^{\circ}C$	27569	daN				
0	$^{\circ}$ C	27462	daN				
5	$^{\circ}C$	27354	daN				
10	$^{\circ}$ C	27246	daN				
15	$^{\circ}C$	27138	daN				
20	$^{\circ}C$	27031	daN				
25	$^{\circ}C$	26923	daN				
30	°C	26815	daN				
35	°C	26708	daN				
40	°C	26600	daN				

La validità dei calcoli è legata alla corretta tesatura in fase di posa.

8 Segnaletica 2 Villa D'Alegno - Temù

8.1 Dati campata

Tabella 12: Dati Campata segnaletica 2

V	alle	Mo	nte		Campata	
Prog.	Quota	Prog.	Quota	Lung. orizz.	Dislivello	Lung. Inclin.
X_a	Y_a	X_b	Y_b	l	Δh	L
(m)	(m)	(m)	(m)	(m)	(m)	(m)
10	1250.50	1505.95	1355.10	1495.95	114.6	1500.33

8.2 Dati fune

Tabella 13: Dati fune segnaletica 2

Dati fune segnaletica 2

		0			
Diametro	Sezione	Peso unitario	Carico rottura	Tiro valle	
D	S	q	C_{rott}	T_a	
(mm)	(mm^2)	$(\frac{kg}{m})$	(kN)	(kN)	
32	432	3.88	720	210	

Il tiro a valle T_a è rapportato alla condizione di maggior tiro (-25°C).

8.3 Azioni

Calcolate per le funi di segnalazione.

8.3.1 In esercizio

Con il significato dei simboli descritto al punto 3.1.2:

$$q_v = 25 \times 32 \times 10^{-3} = 0.8 \, \frac{kg}{m}$$

$$q_e = \sqrt{(q^2 + q_v^2)} = 3.96 \frac{kg}{m}$$

8.3.2 Fuori esercizio

Con il significato dei simboli descritto al punto 3.1.2:

$$q_g = \pi \times 600 \frac{(32 + 2 \times 25)^2 - 32^2}{4 \times 10^6} = 2.69 \frac{kg}{m}$$

$$q_{v1} = 120 \times (32 + 2 \times 7.27) \times 10^{-3} = 5.58 \frac{kg}{m}$$

Con il manicotto ridotto a 0.2.

$$q_{fe1} = \sqrt{((q+0.2 \times q_g)^2 + q_{v1}^2)} = 7.12 \frac{kg}{m}$$

$$q_{v2} = 120 \times (32 + 2 \times 25) \times 10^{-3} = 9.84 \frac{kg}{m}$$

$$q_{fe2} = \sqrt{((q+q_g)^2 + (0.2 \times q_{v2})^2)} = 6.86 \frac{kg}{m}$$

$$q_{fe} = \max(q_{fe1}, q_{fe2}) = 7.12 \frac{kg}{m}$$

8.3.3 In esercizio -25 °C, vento senza ghiaccio

Metodi di calcolo: configurazioni fune a CATENARIA

Num.campata: 1 salto termico: 0 Lunghezza orizzontale: 1495.95 dislivello: 114.60

Tensione in campata a valle (daN): 21000
Tensione in campata a monte (daN): 21454
Freccia campata (m): 53.07

CALCOLO CAMPATA

Campata	T.valle	T.monte	Svil.	Frecc.	a(v)	a(m)
N.SOST	(daN)	(daN)	(m)	(m)	gradi	gradi
SV-SM	21000	21454	1505.31	53.07	-3.73	12.37

8.3.4 In esercizio +20 °C

Metodi di calcolo: configurazioni fune a CATENARIA

Num.campata: 1 salto termico: 45 Lunghezza orizzontale: 1495.95 dislivello: 114.60

Tensione in campata a valle (daN): 19544
Tensione in campata a monte (daN): 19998
Freccia campata (m): 57.08

Campata	T.valle	T.monte	Svil.	Frecc.	a(v)	a(m)
N.SOST	(daN)	(daN)	(m)	(m)	gradi	gradi
SV-SM	19544	19998	1506.08	57.08	-4.34	12.96

8.3.5 In esercizio +40 °C, con vento

Metodi di calcolo: configurazioni fune a CATENARIA

Num.campata: 1 salto termico: 65 Lunghezza orizzontale: 1495.95 dislivello: 114.60

Tensione in campata a valle (daN): 18246
Tensione in campata a monte (daN): 18700
Freccia campata (m): 61.21

CALCOLO CAMPATA

Campata	T.valle	T.monte	Svil.	Frecc.	a(v)	a(m)
N.SOST	(daN)	(daN)	(m)	(m)	gradi	gradi
SV-SM	18246	18700	1506.94	61.21	-4.96	13.57

8.3.6 Controverifica manuale

Si esegue la verifica manuale dei risultati con il metodo approssimato della parabola:

$$f_{max} = \frac{q_e \times L \times l}{8 \times T} = \frac{3.96 \times 1495.95 \times 1500.33}{8 \times 21000} = 52.90$$

$$T_m = T + q_e \times \Delta h = 21000 + 3.96 \times 114.6 = 21453 \ daN$$

Il risultato è compatibile, 53.07 m con il calcolo utilizzando la catenaria.

8.3.7 Fuori esercizio -25 °C, ghiaccio e vento

Metodi di calcolo: configurazioni fune a CATENARIA

Num.campata: 1 salto termico: 0 Lunghezza orizzontale: 1495.95 dislivello: 114.60

Tensione in campata a valle (daN): 35000
Tensione in campata a monte (daN): 35816
Freccia campata (m): 57.31

Campata	T.valle	T.monte	Svil.	Frecc.	a(v)	a(m)
N.SOST	(daN)	(daN)	(m)	(m)	gradi	gradi
SV-SM	35000	35816	1506.14	57.31	-4.37	13.00

8.3.8 Fuori esercizio -25 °C, senza ghiaccio e vento

Metodi di calcolo: configurazioni fune a CATENARIA

Num.campata: 1 salto termico: 0 Lunghezza orizzontale: 1495.95 dislivello: 114.60

Tensione in campata a valle (daN): 21000
Tensione in campata a monte (daN): 21445
Freccia campata (m): 51.98

CALCOLO CAMPATA

Campata	T.valle	T.monte	Svil.	Frecc.	a(v)	a(m)
N.SOST	(daN)	(daN)	(m)	(m)	gradi	gradi
SV-SM	21000	21445	1505.11	51.98	-3.56	12.21

8.3.9 Fuori esercizio +40 °C

Metodi di calcolo: configurazioni fune a CATENARIA

Num.campata: 1 salto termico: 65 Lunghezza orizzontale: 1495.95 dislivello: 114.60

Tensione in campata a valle (daN): 18246 Tensione in campata a monte (daN): 18700 Freccia campata (m): 61.21

CALCOLO CAMPATA

Campata	T.valle	T.monte	Svil.	Frecc.	a(v)	a(m)
N.SOST	(daN)	(daN)	(m)	(m)	gradi	gradi
SV-SM	18246	18700	1506.94	61.21	-4.96	13.57

8.3.10 Coefficiente di sicurezza

in esercizio

$$k_e = \frac{C_{rott}}{T_{max}} = \frac{72000}{21454} = 3.36 > 3.00$$

fuori esercizio

$$k_{fe} = \frac{C_{rott}}{T_{max}} = \frac{72000}{35816} = 2.01 > 2.00$$

La fune sopporta il carico combinato.

8.3.11 Tabella di tesatura

Tesatura					
Tem	peratura	Tiro			
am	biente	di posa			
-25	°C	21000	daN		
-20	$^{\circ}C$	20788	daN		
-15	$^{\circ}C$	20576	daN		
-10	$^{\circ}C$	20364	daN		
-5	$^{\circ}C$	20153	daN		
0	$^{\circ}C$	19941	daN		
5	$^{\circ}C$	19729	daN		
10	$^{\circ}C$	19517	daN		
15	$^{\circ}C$	19305	daN		
20	$^{\circ}C$	19093	daN		
25	$^{\circ}C$	18882	daN		
30	$^{\circ}C$	18670	daN		
35	$^{\circ}\mathrm{C}$	18458	daN		
40	$^{\circ}\mathrm{C}$	18246	daN		

La validità dei calcoli è legata alla corretta tesatura in fase di posa.