Redfeather Ventures Limited

Via F.Ili Calvi n. 53/I, 25056 Ponte di Legno (BS)

51 Water Lane, SK95BQ – WILMSLOW (UK)

Ambiente e Turismo

Potenziamento offerta turistica

Comprensorio Temù - Pontedilegno - Tonale

Nuovo impianto ad aerofune "Adamello"

Circuito Roccolo Ventura / Villa Dalegno / Temù

Architettura e Paesaggio

PROGETTO

RELAZIONE GENERALE

SEZIONE.ALLEGATO

ENAV

DATA

Febbraio 2017

Documentazione:

Relazione a corredo dell'istanza di valutazione ostacoli al volo

I Committenti

S.I.T. - Società Impianti Turistici Spa

I Progettisti

SEZIONE A * ARCHITETTURA E PAESAGGIO Architetto Giancarlo Beltracchi Architetto Alessandro Beber Architetto Fabio Bonetti

SEZIONE B * STRUTTURE Ingegnere Alex Toigo

COORDINAMENTO

FLY EMOTION - Redfeather Ventures Limited

SEZIONE C * GEOLOGIA GEOL. ZUBANI MAURO GEOL. FAUSTINELLI IVAN

SEZIONE D * IMPIANTO FUNIVIARIO Ingegnere Mauro Dandrea

SEZIONE E * RILIEVI TOPOGRAFICI Geometra Pier Giovanni Lissana

Premessa

I dati riportati nella seguente relazione sono estratti dal progetto funiviario allegato alla presente, il progetto allegato è a firma dell'Ing. Marco Dandrea, iscritto all'Albo ingegneri della Provincia di Belluno al N° 719, con Studio in Località Plan del lago 64, Cortina d'Ampezzo (BL)

Per tutti i dettagli e approfondimenti tecnici si rimanda alla visione del progetto funiviario allegato.

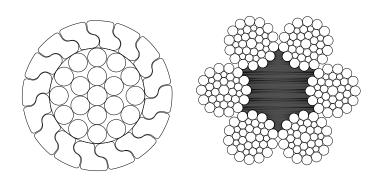
Descrizione dell'intervento

L'impianto di attrazione denominato "Aerofune Fly Emotion Adamello" oggetto della presente segnalazione è localizzato nel Comune di Temu' (BS) e si compone di due tratte di volo: la prima con partenza presso il Rifugio Roccolo Ventura, a quota 1724m ed arrivo a Villa Dalegno, a quota 1358m; la seconda con partenza sempre a Villa Dalegno (1355m) ed arrivo a Temù, a quota 1200m, nei pressi del campo scuola sci (si veda doc. allegato "4 – tracciati su CTR.pdf").

Le tratte dell'impianto sono costituite ciascuna da una fune portante chiusa (Fig. 1a) ed una fune segnaletica a trefoli (Fig. 1a) di opportune dimensioni, <u>tirate in unica campata ed ancorate alle strutture di partenza e arrivo</u> tramite idonee strutture.

Verifica preliminare e requisiti per la valutazione dell'ostacolo

Come indicato nella procedura ENAV, si è proceduto a verificare preliminarmente la necessità della valutazione specifica dell'ostacolo: la valutazione specifica è necessaria poiché le funi in questione si trovano a **quota superiore ai 100m dal suolo e oltre 45m sull'acqua** (punto d del documento verifica preliminare rev. 2015 disponibile sul sito di ENAC).


Non ricorrono altri presupposti (si veda anche doc. "5 – report verifica preliminare.pdf")

Caratteristiche costruttive essenziali

Le funi sono in acciaio ad alto tenore di carbonio e vengono ancorate con tamburi e morsetti ad apposite strutture di sostegno realizzate in carpenteria metallica (acciaio da costruzioni).

Le sezioni delle funi, rappresentate in Fig. 1, hanno i seguenti diametri (si veda allegato "2 - relazione calcolo funiviario.pdf"):

Fune	Tipo	Diametro [mm]	Lunghezza orizzontale campata [m]	Franco verticale massimo [m AGL]
Portante 1	Fune chiusa	25	1961.00	229 (progr. 545)
Segnaletica 1	Fune chiusa	25	1958	229 (progr. 545)
Portante 2	Fune chiusa	22	1411.85	78 (progr. 749)
Segnaletica 2	Fune a trefoli	32	1495.95	99 (progr. 957)

Fune tipo Warrington-seal

Figura 1 - Sezioni funi utilizzate nell'impianto

Fune chiusa tipo FLAR

Punti notevoli dell'impianto, loro posizioni e quote

Nella tabella seguente si riportano i dati richiesti relativamente ai punti notevoli dell'impianto (ancoraggi e punti di maggiore altezza dal suolo – non esistono piloni intermedi) con le relative quote espresse in metri ed in piedi. I riferimenti numerici corrispondono a quelli indicati nelle tavole allegate; si omettono i punti relativi alle stazioni di partenza e arrivo ove non rilevanti ai fini dell'ostacolo al volo.

N.	Descrizione	Longitudine WGS84	Latitudine WGS84	Quota AMSL [m]	Quota terreno [m]	Quota AGL [m]	Quota AMSL [ft]	Quota terreno [ft]	Quota AGL [ft]
1	Ancoraggio Portante 2 - valle	E010° 28′ 37.68"	N046° 14′ 42.24"	1200.00	1199.00	1.00	3937	3934	3
3	Ancoraggio Segnaletica 2 - valle	E010° 28′ 36.55"	N046° 14′ 39.39"	1240.50	1240.00	0.50	4070	4068	2
4	Ancoraggio Portante 1 - valle	E010° 29′ 10.51"	N046° 15′ 23.12"	1358.00	1352.00	6.00	4455	4436	20
5	Ancoraggio Portante 2 - monte	E010° 29′ 10.75"	N046° 15′ 21.65"	1355.00	1352.60	2.40	4446	4438	8
6	Ancoraggio Portante 1 - monte	E010° 29′ 20.85"	N046° 14′ 20.00"	1724.00	1706.00	18.00	5656	5597	59
7	Ancoraggio Segnaletica 1 - monte	E010° 29' 20.69"	N046° 14' 20.09"	1725.50	1706.00	19.50	5661	5597	64
8	Ancoraggio Segnaletica 1 - valle	E010° 29' 10.46"	N046° 15' 23.12"	1358.00	1352.00	6.00	4455	4436	20
9	Ancoraggio Segnaletica 2 - monte	E010° 29′ 10.85"	N046° 15′ 21.77"	1355.10	1352.60	2.50	4446	4438	8
10	Franco massimo portante 1	E010° 29' 13.38"	N046° 15' 05.58"	1392.50	1163.50	229	4569	3817	751
12	Franco max portante 2	E010° 28' 55.28"	N046° 15' 03.21"	1228.27	1150.27	78	4030	3774	256

Segnalazione proposta

Come già in essere presso altri impianti analoghi (es: Aerofune Fly Emotion Albaredo – Bema in prov. di Sondrio, rif.) e come da prassi per altri impianti assimilabili (funivie, teleferiche, linee elettriche) si propone l'installazione di apposite funi di segnalazione dotate di sfere di colore bianco e rosso di diametro almeno 50 cm, poste alternativamente ad intervalli minori di 30 m, a quota superiore rispetto alle funi portanti (si vedano profili verticali in "1 – profili e GPS.pdf"). Tali segnalazioni tra l'altro rispettano le indicazioni per i segnali visuali diurni di cui all'Allegato A - dispaccio n. 146/394/4422 del 9/8/2000 dello Stato Maggiore della Difesa.

In caso di scelta di sistemi di sghiacciamento con carrelli elettro-meccanici, le sfere saranno assicurate alle funi di segnalazione tramite idonei sistemi di sospensione (vd. Fig. 2), i quali consentiranno il passaggio sulla fune di carrelli meccanizzati automatici per il servizio e per la manutenzione delle linee. Si precisa che il centro delle sfere segnaletiche sarà posto ad una distanza non superiore a 1 m. dall'asse della fune, si veda l'allegata Tav. 6.

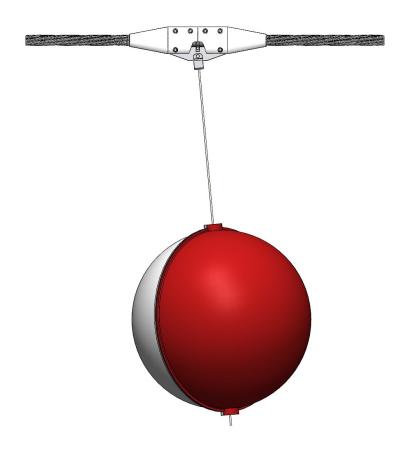


Figura 2 - Segnalazione con palloni appesi sotto le funi di quardia

Distanze tra le funi segnaletiche e gli ostacoli

In taluni casi, a causa delle tensioni ridotte applicabili alle funi di segnalazione ed alle lunghe campate adottate per questo tipo di impianti, gli ancoraggi delle funi segnaletiche devono essere posti a quote significativamente superiori rispetto a quelli delle funi portanti. In questo modo, il profilo della fune segnaletica rimane sempre superiore a quello delle funi portanti.

Nel caso dell'impianto in esame, solo un punto di ancoraggio (fune segnaletica nr. 2, ancoraggio di valle, punto nr. 3 della tabella di pag. 4) differisce in maniera significativa dall'ancoraggio della relativa portante: ciò consente alla fune segnaletica di rimanere costantemente a quota superiore rispetto all'ostacolo senza interferenza.

Di seguito si riepilogano le distanze orizzonatali e verticali minime e massime tra le funi di segnalazione ed i relativi ostacoli (le funi portanti) per le due tratte dell'impianto.

Tratta 1 (Rif. Roccolo Ventura – Villa D'Alegno)

Distanza sul piano	Minima [m]	Massima [m]
Orizzontale	1.0 (valle)	2.5 (monte)
Verticale	0.0 (valle)	2.6 (monte)

Tratta 2 (Villa D'Alegno – Temù)

Distanza sul piano	Minima [m]	Massima [m]
Orizzontale	0.0 (monte)	4.4 (valle)
Verticale	0.0 (valle)	35.9 (valle)